Business Development in Sewage Treatment in India

TOSHIBA

Toshiba Water Solutions Private Limited January 13th, 2023

Contents

- 01 Company Profile
- 02 Ozonation System
- 03 ZLD Solution
- 04 Energy saving type Organic Wastewater Treatment

01

Company Profile

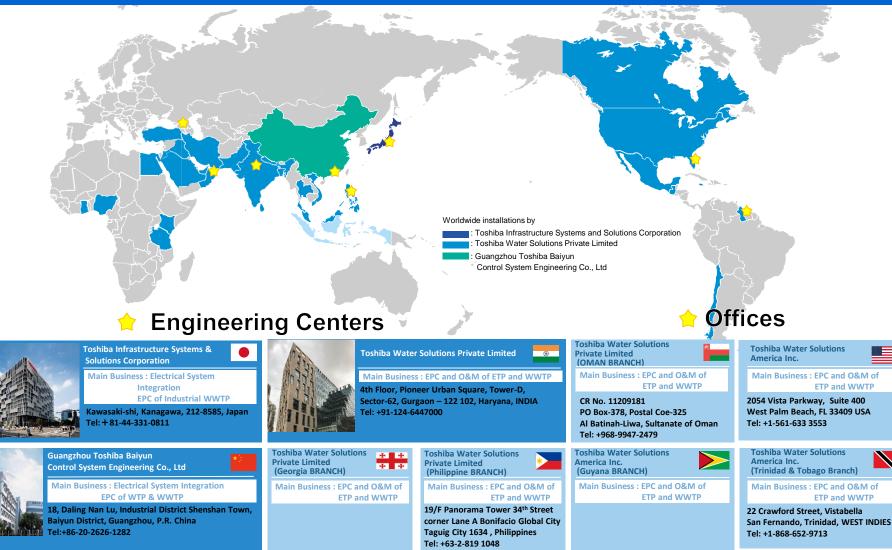
1-1 Toshiba Group

Toshiba Corporation

 Establishment 	July 1875
 Headquarters 	Minato-ku, Tokyo, Japan
 Employees (Consolidated) 	Approx.116,224 (as of 31, March, 2022)
 Net Sales (Consolidated) 	¥ 3,337 billion (as of 31, March 2022)

Energy Business Domain

Toshiba Energy Systems & Solutions Corporation



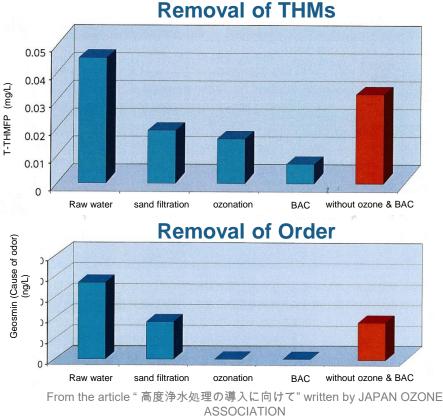
Social Infrastructure **Electronic Devices Digital Solutions Business Domain Business Domain Business Domain Toshiba Electronic** Toshiba Toshiba Infrastructure Systems **Devices & Storage Digital Solutions** & Solutions Corporation Corporation Corporation Toshiba Tec Corporation Toshiba Elevator And Building 6% Systems Corporation 16% 6% Infrastructure Toshiba Lighting & Technology Sys. & Sol. Corporation **FY2022** Consolidated Toshiba Carrier Corporation Corp. **Net Sales(Actual)** 18% 24% 654.7 **JPY 3,337 B Billion yen** (USD 27.4B) 17% 13% ■ Energy ■ Infra. ■ Building ■ Printing ■ Device ■ Digital ■ Others

1-2 Water & Environmental Business Global Reach

Approx. 4,000 employees across the world Project experience in more than 35 countries

1-3 Toshiba Water Solutions

Company Name:	Toshiba Water Solutions Private Limited
Stablished:	1973 USA (1977 Trinidad &Tobago / 1983 India)
Managing Director:	Hiroaki KOBAYASHI (CMD)
* Head Office:	New Delhi
* Offices:	USA (Florida), Trinidad & Tobago Oman, Philippine, Georgia
✤ Capital:	Toshiba 100%
* No. of Employees:	Approx. 700
Main Business:	EPC, O&M Service for Municipal and Industrial Water Treatment System
Achievements:	More than 400 Water and Wastewater Treatment Plants in 50 countries



Ozonation System - TOSHIBA TGOGS™

2-1 What is OZONE for?

for Drinking water treatment

- · Improvement of odor, taste, color
- · Disinfection
- Reduction of organic compounds
- Reduction of trihalomethanes (THMs) precursor



for Sewage water treatment

- Disinfection
- Improvement of odor, color

Examples

- $\cdot\,$ Ozone is effective in removing COD, SS and color from raw water.
- Whereas increasing O_3 dosage decreases COD value, it increases BOD value. This is because COD becomes biodegradable substances through ozonation. Installation of activated carbon posterior to ozone results in high-level removal of BOD.

© 2023 Toshiba Water Solutions Private Limited 8

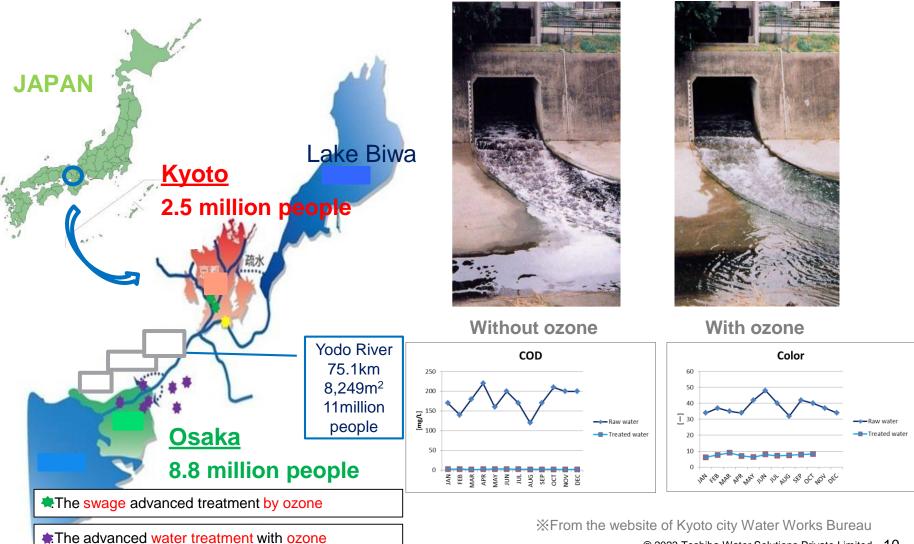
2-2 High value of THMs in the drinking water of Ganga downstream

Due to cancer risk, THMs are restricted in US, EU and Japan

1) Trihalomethanes' standard in US, EU, Japan and India

	USEPA [mg/L]	EU [mg/L]	Japan [mg/L]	India [mg/L]
Chloroform	-	-	0.06	0.2
Bromodichloromethane	-	-	0.03	0.06
Dibromochloromethane	-	-	0.1	0.1
Bromoform	-	_	0.09	0.1
Total Trihalomethanes	0.08	0.1	0.1	-

2) Average trihalomethanes (THM s) value of WTP in the downstream


No.	Water Treatment Plant	THMs Concentration.(mg/L)
1.	Subernrekha WTP. Ranchi	0.357
2.	ADDA WTP, Durgapur	0.362
3.	IGWTP, Kolkata	0.523
4.	MAITHON WTP, Maithon	0.536
5.	MADA WTP, Dhanbad	0.569
6.	BTPS WTP, Bokaro	0.594
7.	CTPS WTP, Chandrapura	0.566
8.	TISCO WTP, Jamadoba	0.413

from Journal of Environmental Health Science & Engineering 2014. (http://www.ijehse.com/content/12/1/73) **XAverage lifetime cancer risk for total THMs through ingestion** route in all water supply is about 318 times and 260 times for male from Drinking water quality by WaterAid (wwwanat@enitateg)

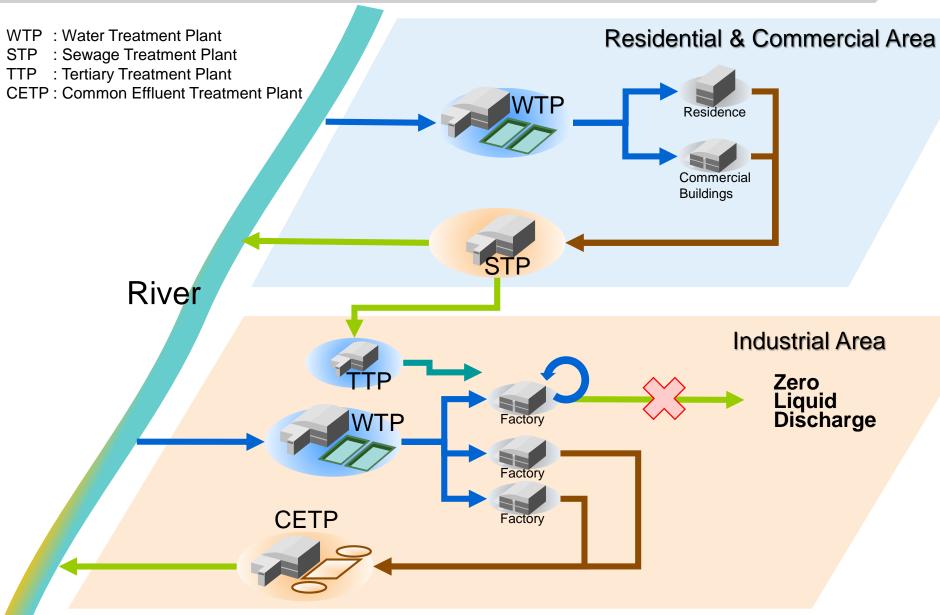
2-3 Solution : Case of Kyoto and Osaka, Japan

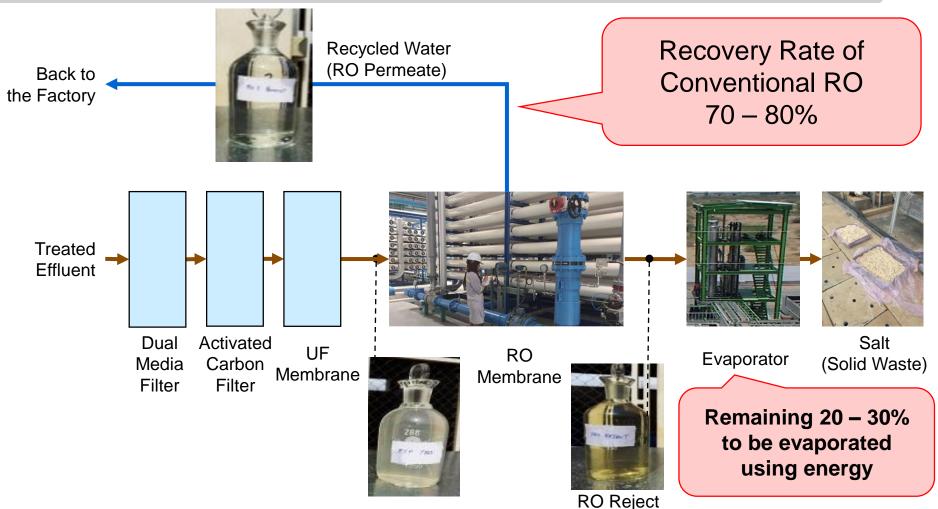
Ozonation at upstream STP and Ozonation at downstream WTP

2-4 India Largest Ozonation plant, Chandrawal WTP, DJB

Project Outline				
End User	Delhi Jal Board			
Fund	JICA			
Prime Contractor	L&T			
WTP Capacity	477MLD			
Ozone Capacity	31kg/hr x 3 (2D-1S)			
Make	Toshiba, Japan			

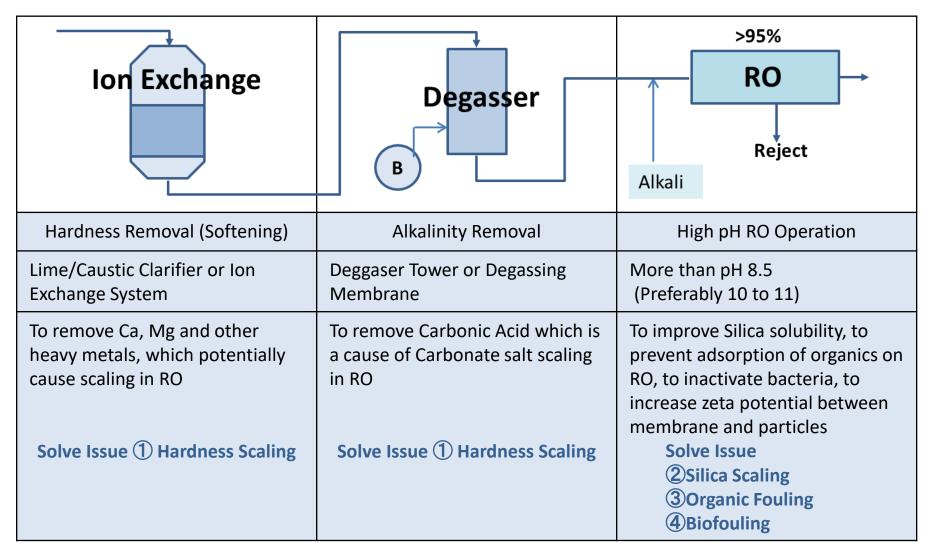
Construction work is going on. The above : Ozone Contact Tank The left : Ozone Building


Ozone Generators are under manufacturing in Toshiba Fuchu factory in Tokyo, Japan. It will be dispatched in April, 2023


ZLD Solution - TOSHIBA High pH RO System

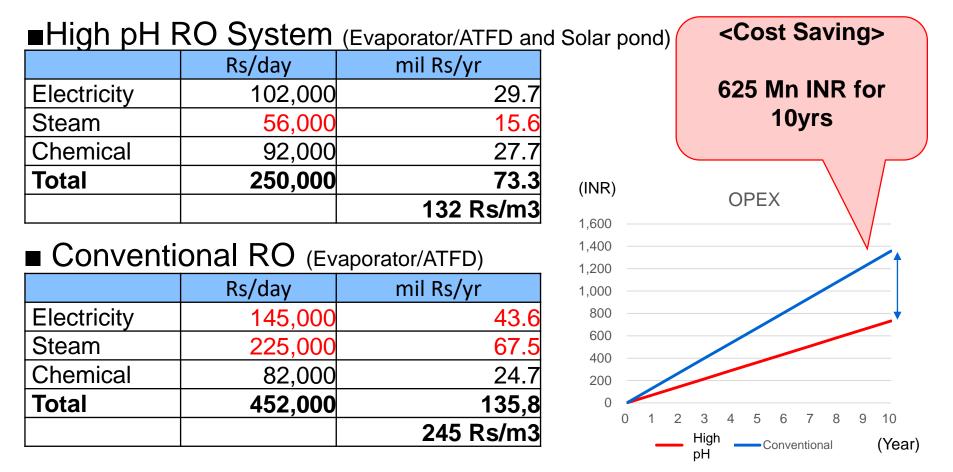
ZLD: Zero Liquid Discharge

3-1 Water Circulation System


3-2 Typical Effluent Recycling System (ZLD)

Enhancing recovery rate saves ENERGY and OPEX Not only increases WATER RESOUCE

3-3 Toshiba High pH RO System


High pH System enables to recover more than 95% water

3-4 OPEX – Example of Textile plant

General Assumption

- 1.85MLD Textile Plant
- 300 day/year, ATFD is operated for 100 days/yr for Toshiba High pH RO System
- Electricity: Rs 10/kWh, Steam at 6 kg/cm2: Rs 1.6/kg

Energy saving type Organic Wastewater Treatment - AT-BC System

4-1 Understanding

- ✓ Although the requirement has been relaxed by the latest environment rules, NGT recommends more stringent standard including T-N and T-P reduction.
- Even existing plants are also recommended to modify within 7 years by NGT.
- Currently, most of the new STP construction projects comply with NGT recommendation level treatment.

Nam	е	Environment Rules	CPHEEO Manual	Revised (Draft)	Revised	NGT Recommendation
Establishment		1986	2013	2015	2017	2019
Classification		Law	Guideline	Law	Law	Guideline
	BOD3	30 mg/L	10 mg/L	10 mg/L	20 mg/L	10 mg/L
Parameter	TSS	100 mg/L	10 mg/L	20 mg/L	50 mg/L	20 mg/L
	NH4-N	50 mg/L	-	5 mg/L	5 mg/L	-
	NO3-N	10 mg/L	_	-	-	-
lete	TKN	100 mg/L	-	-	-	-
εr	T-N	-	10 mg/L	10 mg/L	-	10 mg/L
	PO4-P	5 mg/L	-	-	-	-
	T-P	-	2 mg/L	-	-	1 mg/L (to lake & pond)

India needs economical BNR solution

NGT: National Green Tribunal BNR: Biological Nutrient Removal means removing Nitrogen and Phosphorous

4-2 Technical Summary

AT-BC system is one of the advanced wastewater treatment system. It was developed integrating and evolving activated sludge process and rotating biological contactor process.

Contactor in the AT-BC is reticulated structure (meshed), it allows high volume of Bacillus sp. to stick and due to the high oxygen supply, and it enables effective removal of BOD and Nitrogen.

Appearance of AT-BC

Reticulated structure

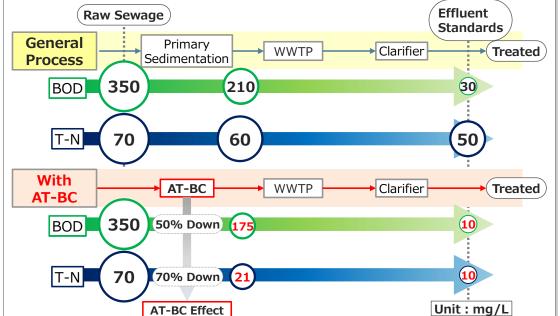
What is Bacillus

Bacillus is a common soil bacterium, and can be found everywhere around us. By putting and growing Bacillus in the aeration tank, they strongly remove COD, Oil & Grease, Nitrogen, etc. as well as BOD. Bacillus is coexisting with conventional activated sludge bacteria in the aeration tank, and will demonstrate outstanding functions and effects.

[Bacillus]

4-3 Reference the System

JPN Mainly to Food Factory 160 Nos. (2000~2018)


To Sewage Treatment Plant ; 82 Nos. (2000 \sim 2007) To Sewage Treatment Plant ; 365 Nos. (2006 \sim 2018)

<Reference of STP Projects>

		Past Projects in China			
STP Location		Xianyang City, Shaanxi Province		Xining City, Qinghai Province	
Capac	Capacity 40MLD/Day		12MLD/Day		
Proce	SS	AT-BC + Bacillus sp.		AT-BC + Bacillus sp.	
Discharge to		River		River	
		Inlet	Outlet	Inlet	Outlet
Water	BOD	260	10.0 以下	350	10.0 以下
Quality (mg/L)	T-N	70	5.0 以下	65	5.0 以下
	T-P	8	0.5 以下	5	0.5 以下

4-4 Performance

4-5 1MLD JICA funded Pilot project in Bangalore

Construction work is going on. Completion : the end of Feb, 23.

Planned Construction Site

Equipment was manufactured in Japan and dispatched to India in Nov., 22.

TOSHIBA

[CONTACT]

Toshiba Water Solutions Private Limited

Address : 4th Floor, Pioneer Urban Square, Tower-D,

Sector-62, Gurgaon – 122 102, Haryana, INDIA

Tel: +91-124-6447000

Contact Person: Mr. Salesh Sharma, Head of Business Development - Domestic